Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices Lachaux J, Alcaine C, Gómez-Escoda B, Perrault CM, Duplan DO, Wu PJ, Ochoa I, Fernandez L, Mercier O, Coudreuse D, Roy E Lab Chip. 2017 Jul 25;17(15):2581-2594. doi: 10.1039/c7lc00488e



Abstract   Download PDF

One of the most important areas of research on microfluidic technologies focuses on the identification and characterisation of novel materials with enhanced properties and versatility. Here we present a fast, easy and inexpensive microstructuration method for the fabrication of novel, flexible, transparent and biocompatible microfluidic devices. Using a simple hot press, we demonstrate the rapid (30 s) production of various microfluidic prototypes embossed in a commercially available soft thermoplastic elastomer (sTPE). This styrenic block copolymer (BCP) material is as flexible as PDMS and as thermoformable as classical thermoplastics. It exhibits high fidelity of replication using SU-8 and epoxy master molds in a highly convenient low-isobar (0.4 bar) and iso-thermal process. Microfluidic devices can then be easily sealed using either a simple hot plate or even a room-temperature assembly, allowing them to sustain liquid pressures of 2 and 0.6 bar, respectively. The excellent sorption and biocompatibility properties of the microchips were validated via a standard rhodamine dye assay as well as a sensitive yeast cell-based assay. The morphology and composition of the surface area after plasma treatment for hydrophilization purposes are stable and show constant and homogenous distribution of block nanodomains (∼22° after 4 days). These domains, which are evenly distributed on the nanoscale, therefore account for the uniform and convenient surface of a "microfluidic scale device". To our knowledge, this is the first thermoplastic elastomer material that can be used for fast and reliable fabrication and assembly of microdevices while maintaining a high and stable hydrophilicity.

A multiplex culture system for the long-term growth of fission yeast cells Callens C, Coelho NC, Miller AW, Sananes MRD, Dunham MJ, Denoual M, Coudreuse D Yeast. 2017 Aug;34(8):343-355. doi: 10.1002/yea.3237



Abstract   Download PDF

Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin-encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo-pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long-term experiments using this model organism.